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Observational Needs from Grand Challenges to the Decadal Survey
®

The 2017 Decadal Survey and the World Climate Research Program Grand Challenges

highlight the need for:

 accurate, high vertical resolution water vapor measurements in the PBL and aloft

 a deeper understanding of the role of clouds in weather and climate systems which
requires accurate and high vertical resolution humidity observations around clouds
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Observational Needs from Grand Challenges to the Decadal Survey

The 2017 Decadal Survey and the World Climate Research Program Grand Challenges

highlight the need for:

 accurate, high vertical resolution water vapor measurements in the PBL and aloft

* a deeper understanding of the role of clouds in weather and climate systems which
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How Do we Currently Observe Atmospheric Water Vapor?
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Absorption Cross-Section
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along track averaging vertical averaging
DIAL measures the differential attenuation of lidar signals between on and off transmitted wavelengths
Multiple wavelengths can extend dynamic range from UT/LS down to PBL

Accuracy in the PBL is independent of humidity and aerosol signals aloft
DIAL directly measures water vapor without need for calibration or a priori information on atm. state
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Airborne DIAL Heritage — High Altitude Lidar Observatory (HALO)
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» Develop a pathfinder mission concept and
advance associated technologies to enable the
first demonstration of DIAL in space

e » | - Water vapor profiling from mid-troposphere to PBL

PBL Heights - 200-400 m resolution in the PBL, 1 km in mid-trop

Aerosol/Cloud Profiling .
Methane Columns - 50-75km along track resolution

* Novel laser technologies enable crosscutting
science spanning disparate science focus
areas

- Weather and dynamics (including PBL)
- Atmospheric composition and radiation
- Carbon Cycle

« Set stage for synergistic observing system with
other active and passive sounders

« Balance performance/complexity with
affordable and flexible design to fit within
future cost capped missions




Development approach

1. Develop space qualifiable Er:YAG laser transmitter

2. Increase efficiency of 1532 nm pump diodes to enable operation on smallsat

3. Develop photonic integrated circuit seed laser as injection seeding source

4. Develop satellite instrument concept capable of rideshare launch on ESPA Grande




Pulsed Laser Advancement — Challenges and Driving Requirements

®
« 820 nm spectral band is attractive for space-based water vapor DIAL _ 107 m 0-7
- Absorption lines provide sensitivity to the mid-lower troposphere E TmYLE W ErYAG =f------ % 0.6
- Enhanced Rayleigh scattering compared to SWIR _ém'22 0.5
- Allows for use of efficient, single photon sensitive Si detectors § | |
. . . b I 104
- Spectrum accessed by efficient emerging laser technologies 21024 W “m ' I |:
. . 5 N o3
* Laser transmitter is one of the primary challenges for space-based DIAL ¢ | I
g 0.2
- High efficiency and low complexity for small SWaP 2107 ~
- High peak and average power, frequency agile and good beam quality é oF " Ti: Sapphire INd:xxd OPO 0.1
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Near Infrared Laser Survey Wavelength (nm)

Laser f:f;cz'g ':::3: Power (W) E:::,Z‘; Complexity Maturity
Ti:Sapphire - 5-10 100 mJ - Mature Diodes Nd = 2x = Ti:Sapphire ===
OPO - 5-10 50-80 mJ - Mature Diodes Nd = 2x = OPO/OPA ===
ACT-17, T.Y, Fan  Tm:LiYF,(YLF) 5-8% 20-30 10-15 mJ 2 parts .erging Diodes Tm:YLF ==
IIP-19, ABLE Er:YAG 2-3% 6-10 3-5mJ 3 parts Emerging Diodes ErYAG = 2X =

A transmitter for space-based mission has been a challenge pursued for >3 decades

Rayleigh Normalized to 532 nm



Pulsed Laser Advancement — Reducing complexity and enabling

crosscutting science
@

* Doubled Er:YAG provides access to appropriate strength water vapor lines in the NIR

» Reduced complexity compared to heritage airborne DIAL transmitters
« Dual wavelength Er:YAG allows for crosscutting science that addresses several 2017 Decadal
Survey Target Observables
- Water vapor profiles and PBL heights — PBL Incubation
- Methane columns — Earth Explorer

- Aerosol/cloud distributions — ACCP Continuity HALO Methane Columns
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1645 nm Pulse Energy (mJ)

Pulsed Laser Advancement — Er:YAG Performance

* Er:YAG laser developed for airborne applications meets
many of the requisite characteristics for space-based DIAL

Observed 1645/822 nm pulse energy agrees with laser rate
equation models

Single frequency and high spectral purity operation
demonstrated via injection seeding

Worlds first and only demonstration of all electro-optic
cavity stabilization (i.e. no moving parts)
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Pulsed Laser Advancement — Technology Advances

« Er:YAG technology advances
- Increase PRF from 1kHz to >2kHz with >6 mJ at 1645 nm
- Increase optical to optical efficiency from 10% to 20%

- Replace TEC for Er:YAG gain heads with heat pipes resulting in 25%
reduction in power consumption

- Heat pipe thermal management of optical bench
« Design and build a TRL 5 laser optical module for future qualification

» Er:YAG offers the world’s first direct measure of the critical water vapor
cycle plus the highest resolution spatial sampling of methane sources
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| Parameter | __Results__| _Objective

Wavelength 1645/823 nm 1645/823 nm
Pulse Energy 6.5 mJ 6-7 mJ
Repetition Rate 1 kHz 2-3 kHz
Average Power 6.5W 13-14 W
SHG Efficiency 50% 50-60%
Pulse Width 120 ns 100-120 ns
Linewidth 19 MHz <100 MHz
Spectral Purity 1000:1 = 1000:1
Wavelength Tuning shot-to-shot shot-to-shot
System Efficiency 1.4% 2 5%
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Pump Laser— Increase Efficiency and Brightness

* Increase efficiency of commercially available 1532 nm pump diodes from
~20% to >40% with = 35 W output power Pearl Element

(COTS) (ABLE)

« Multi-pronged approach to increasing efficiency
- Optimize diode epitaxial design
- Achieve higher brightness through optical mode control
- Increase optical throughput
- Increase thermal conductivity

* Preliminary results demonstrate >35% efficiency with 3x brightness Optical — Electrical Efficiency
100 40%

 Improved efficiency and brightness allows for optimization of pulsed laser
architecture and power scaling for more capable mission concepts
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Seed Laser — Bridging the gap from airborne to flight

®
« Seed laser is the heart of DIAL systems and can affect the accuracy of the DIAL retrieval

« Discrete components used in airborne systems not compatible with SWaP constraints on SmallSats
* Photonic integration employed to significantly reduce SWaP and increase reliability
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Seed Laser — Photonic Integrated Circuit

®
« Seed laser is the heart of DIAL systems and can affect the accuracy of the DIAL retrieval

« Discrete components used in airborne systems not compatible with SWaP constraints on SmallSats
* Photonic integration employed to significantly reduce SWaP and increase reliability

TRL 9 Airborne Photonic Integration TRL 5 Flight
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PIC Seed Laser Source — Architecture
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PIC Seed Laser Source — Preliminary Results

@
» PIC exhibits requisite performance for space-based DIAL
- Primary seed laser has >5x the required power for line locking allowing for adequate derating
- >20 mW from secondary seed laser allows efficient seeding of Er:YAG pulsed laser
- Both primary and secondary lasers have broad continuous tuning range
- Demonstrated rapid scanning across CH, lines suitable for step-locked optical phase lock loop

« Current focus is on characterizing bandwidth of balanced detectors and coupling to
RF components
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Spacecraft Accommodations and Systems Engineering

[
« Spacecraft accommodation survey identified several ESPA class buses suitable for capable lidars

» Highly evolving industry shows promise for accommodating space-based DIAL SWaP requirements
* Preliminary systems engineering study demonstrates the feasibility of DIAL on SmallSat platforms

Parameter ]

Pulse Energy (822/1645 nm) 3.5mJ/3.5 mJ

Repetition Frequency 2 kHz
Telescope Diameter 0.8 m E ded
Xpanae
Field of View (H,O/CH,) 50/200 prad Standard ESPA heigr']ot Volume
, , ss, Grande Volume
H,O DIAL Detector Si Photon Counting - (standard

CH4 Detector InGaAs APD — spacer ring)
Payload Power B I - R B T /

Orbit Polar — 500 km
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